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Lecture 07:  HO Programming and Type Classes
o Curried Functions
o Folding
o Type Classes

Reading:  Hutton Ch. 3 & beginning of 7

You should also look at the Standard Prelude in Appendix B!    



HO Programming: Curried Functions
Recall that function slices are created from infix functions/operators by giving one of the 
operands, and leaving the other out. The missing operand is a parameter – this turns a 
function of two arguments into a function of one argument:

Main> (3^2)
9

Main> (^2) 3
9

Main> (3^) 2
9

(3 ^ 2) 2    =>  9

(\y -> 3^y) 2 =>! 3^2  => 9

Main> (\x -> \y -> x^y) 3 2
9

Main> (\x -> x^2) 3 
9

Main> (\y -> 3^y) 2
9



HO Programming: Curried Functions
But notice that what we are doing here is partially applying a function to one of its 
arguments, and then stopping halfway through and calling it a new function:

(\x -> (\y -> x^y)) 3 2

=>! (\y -> 3^y))   2

=>! 3^2

=>                 9



HO Programming: Curried Functions
We can do this any time we want, with any lambda expression with more than one 
argument:

Main> f = (\x -> (\y -> x^y)) 3 

Main> f 2
9

By referential transparency, this is the same as:

Main> (\x -> (\y -> x^y)) 3 2
9

except that we “froze” the computation after applying the first argument. 



HO Programming: Curried Functions
This explains why the following are all completely equivalent:

f x y z = (x,y,z)

f x y = \z -> (x,y,z)

f x = \y -> (\z -> (x,y,z))

f x = \y z -> (x,y,z)

f = \x -> (\y -> (\z -> (x,y,z)))

f = \x y z -> (x,y,z)

which is proved by the type: all these will have the same type:

f :: a ->  b ->  c -> (a,b,c)

f = \x -> \y -> \z -> (a,b,c)

Notice how the type arrows 
line up with the arrows in 
the lambda expression!
Not a coincidence!



HO Programming: Curried Functions
It also explains why all functions can be thought of as unary (one-parameter) functions.

f
3
'a'

True
(3,'a’,True)

f x y z = (x,y,z)

f takes three 
arguments

and produces a triple



HO Programming: 
Curried Functions

f3

'a'

True (3,'a’,True)

f takes one argument and produces a 
function f’ of two arguments:
f x = \y -> \z -> (x,y,z)

f’ f’’
f’ takes one argument 
and produces a function 
f’’ of one argument:
f’ y = \z -> (3,y,z)

f’’ takes one argument and 
produces a value:
f’’ z = (3,’a’,z)

f’

f’’

f =  \x -> \y -> \z -> (x,y,z)



HO Programming: Curried Functions

This also explains why function application is left-associative and the arrow (in lambda 
expressions OR in type expressions) is right-associative:

f  3 ‘a’ True        f :: a ->  b ->  c -> (a,b,c)
f = \x -> \y -> \z ->( x,y,z)

(f 3) ‘a’ True       f :: a -> ( b  -> c -> (a,b,c))
f = \x -> (\y -> \z -> (x,y,z))

((f 3) ‘a’) True     f :: a -> ( b -> ( c -> (a,b,c)))
f = \x -> (\y -> (\z -> (x,y,z)))



HO Programming: Curried Functions

NOTE carefully that these functions DO have the same type:

g ::  a ->  b -> c 

h ::  a -> (b -> c) 

But these functions do NOT have the same type:

g’ ::  a -> b  -> c 

h’ :: (a -> b) -> c 



Higher-order Programming Paradigms
Fold (also called reduce) is another function which uses a function as a parameter.
There are two versions foldr (foldr) and foldl (fold left).

Fold right takes a list (constructed with the cons operator : ) and effectively 
replaces the cons with a function of two arguments, and the empty list with an 
“initial value” to get the recursion started:

[ e1, e2, e3 ]     

e1 : ( e2 : e3 : [] )

Reading: Hutton Ch. 7.3

:

e1 :

e2 :

e3 [ ]

f

e1 f

e2 f

e3 v

foldr f v [e1,e2,e3]



Higher-order Programming Paradigms
Here is a version of foldr similar to that given in the Prelude:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f v []     = v
foldr f v (x:xs) = f x (foldr f v xs)

Thus, to sum the elements of the list, we could write:

2 : ( 3 : 4 : [] ) 2 + ( 3 + 4 + 0 )

Reading: Hutton Ch. 7.3

:

2 :

3 :

4 [ ]

+

2 +

3 +

4 0

foldr (+) 0 [2,3,4]   =>  9

=>   9

=>   7

=>   4



Higher-order Programming Paradigms
Here are some other applications of foldr – it is actually more powerful than you 
might think at first!

Calculating the length of a list:

foldr add1 0 [2,3,4]

add1 x y = y + 1

2 : ( 3 : 4 : [] ) 2 `add1` ( 3 `add1` 4 `add1` 0 )

Reading: Hutton Ch. 7.3

:

2 :

3 :

4 [ ]

add1

2 add1

3

4

add1

0

=>   1

=>   2

=>   3



Higher-order Programming Paradigms
Here are some other applications of foldr – it is actually more powerful than you 
might think at first!

Reversing a list:

snoc :: a -> [a] -> [a]    -- snoc is “cons” reversed
snoc x xs = xs ++ [x] -- because it adds to end instead of front

foldr snoc [] [2,3,4]

Reading: Hutton Ch. 7.3

:

2 :

3 :

4 [ ]

snoc

2 snoc

3

4

snoc

[ ]

=> [4]

=> [4,3]

=> [4,3,2]



Higher-order Programming Paradigms
Here is another applications of foldr – it is actually more powerful than you might 
think at first!

Collapsing a list:

foldr (++) [] [ [2,3], [4,5], [6,7,8] ]

[2,3]:[4,5]:[6,7,8]:[]     [2,3]++[4,5]++[6,7,8]++[] 

foldr (++) [] [ “hi “, “there “, “folks!” ] => “hi there folks!”

Reading: Hutton Ch. 7.3

:

[2,3] :

[4,5] :

[6,7,8] [ ]

++

[2,3] ++

[4,5]

[6,7,8]

++

[ ]

=> [6,7,8]

=> [4,5,6,7,8]

=> [2,3,4,5,6,7,8]



Type Classes and Overloading
An overloaded operator is the same symbol or name, but used for
more than one type of argument:

2 + 4   3.4 + 5.6   also * - /

“hi” + “ there”    (Python)

True == False     3 /= 5    (Haskell)

Note that data or other syntax is sometimes overloaded

‘hi there!’       “hi there!”      (Python)

34    can be     Int   Integer    Float   Double   (Haskell)

Why do we do this?    Flexibility and convenience and standard math practice!

Reading: Hutton Ch. 3.8, 3.9, 8.5

Note: there is really 
no difference between 
an “operator” and  
“function” – an 
operator IS a 
function, but usually 
is represented infix.



Type Classes and Overloading
Recall: A type is a set of related values and its associated 
operators/functions.

A type class is a set of types that share some overloaded 
operations/functions. In specific:

o The type class is defined by a set of data objects and 
the set of shared operators/functions;

o A type may be a member of multiple type classes;
o A type class may be a subset of another type class  

A type class is similar to 
an interface in Java: it 
defines what operations 
you can use with the type.  

Reading: Hutton Ch. 3.8, 3.9, 8.5
Hutton Appendix B

types      type classes



Int

Integer
Float Double

Type Classes and Overloading
Example: The type class Eq contains all the Equality Types, those that 
implement the equality operators:

Reading: Hutton Ch. 3.8, 3.9, 8.5

==  /=

Eq

Char

Bool

List

Tuples

All types except 
for function 
types are 
instances of Eq

A type contained in a type class is 
called an instance of that class. 



Type Classes and Overloading Reading: Hutton Ch. 3.8, 3.9, 8.5

Naturally, these operators are 
polymorphic:  

*Main> :t (==)
(==) :: Eq a => a -> a -> Bool
*Main> :t (/=)
(/=) :: Eq a => a -> a -> Bool
*Main>



Type Classes and Overloading Reading: Hutton Ch. 3.8, 3.9, 8.5

Naturally, these operators are polymorphic:  
*Main> :t (==)
(==) :: Eq a => a -> a -> Bool

*Main> :t (/=)
(/=) :: Eq a => a -> a -> Bool
*Main>

However, the polymorphism is restricted to types 
which are instances of Eq:

Eq a => a -> a -> Bool

class constraint

This says: “For any type a which is an instance of 
Eq, the function has type a -> a -> Bool ”;
any other type is forbidden. 



Type Classes and Overloading
The type class Ord is a superset of Eq, and contains those types that can be 
totally ordered and compared using the standard relational operators:

(<) :: Ord a => a -> a -> Bool

(>) :: Ord a => a -> a -> Bool

(<=) :: Ord a => a -> a -> Bool

(<=) :: Ord a => a -> a -> Bool

min :: Ord a => a -> a -> a

max :: Ord a => a -> a -> a

Reading: Hutton Ch. 3.8, 3.9, 8.5



Type Classes and Overloading
The type class Eq is a superset of Ord, which contains those types that can be 
totally ordered and compared using the standard relational operators:

Relational tests on tuples and lists is 
lexicographic:

Reading: Hutton Ch. 3.8, 3.9, 8.5

The ordering on lists and tuples is also recursive:

*Main> [ [2,3], [2,4] ] < [ [2,3], [2,5] ]
True

Eq:  ==  /=

Ord:  < > <=\>= 
min max

Ord ⊆ Eq



Type Classes and Overloading
The type class Eq is a superset of Ord, which contains those types that can be 
totally ordered and compared using the standard relational operators.

Every instance of Ord is an instance of Eq, i.e., Ord ⊆ Eq, which is similar to 
inheritance in Java and object-oriented languages:

Reading: Hutton Ch. 3.8, 3.9, 8.5

Eq:  ==  /=

Ord:  < > <=\>= 
min max

Ord ⊆ Eq

Eq

Ord



Type Classes and Overloading
Num – numeric types

The Num class contains numeric values, and consists of the following overloaded 
operators:

(+) :: Num a => a -> a -> a

(*) :: Num a => a -> a -> a

(-) :: Num a => a -> a -> a

negate :: Num a => a -> a

abs :: Num a => a -> a

signum :: Num a => a -> a

Hm...    where is division?

Reading: Hutton Ch. 3.8, 3.9, 8.5



Type Classes and Overloading
Integral – integer types

These are the instances of Num whose values are integers, and support integer 
division and modulus:

div :: Integral a => a -> a -> a

mod :: Integral a => a -> a -> a

*Main> div 5 3
1
*Main> 5 `div` 3
1
*Main> mod 10 4
2
*Main> 10 `mod` 4
2
*Main>

Reading: Hutton Ch. 3.8, 3.9, 8.5

Note that mod and div are prefix functions, to 
turn any function into infix, use back-quotes.      



Type Classes and Overloading
Fractional – floating-point types

These are the instances of Num whose values are floating point, and support 
floating-point division and reciprocation:

(/) :: Fractional a => a -> a -> a

recip :: Fractional a => a -> a 

*Main> 4.0 / 2.2
1.8181818181818181
*Main> recip 5
0.2
*Main> 4 / 2
2.0
*Main> 5 / 2
2.5
*Main> 5 / 2.2
2.2727272727272725

Reading: Hutton Ch. 3.8, 3.9, 8.5

The symbols for integers are overloaded, so 
there is no ”type-coercion” from integer to float 
here.  The values are already fractional!


